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Hyperelastic modelling of arterial layers
with distributed collagen fibre orientations
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Constitutive relations are fundamental to the solution of problems in continuum mechanics,
and are required in the study of, for example, mechanically dominated clinical interventions
involving soft biological tissues. Structural continuum constitutive models of arterial layers
integrate information about the tissue morphology and therefore allow investigation of the
interrelation between structure and function in response to mechanical loading. Collagen
fibres are key ingredients in the structure of arteries. In the media (the middle layer of the
artery wall) they are arranged in two helically distributed families with a small pitch and
very little dispersion in their orientation (i.e. they are aligned quite close to the
circumferential direction). By contrast, in the adventitial and intimal layers, the orientation
of the collagen fibres is dispersed, as shown by polarized light microscopy of stained arterial
tissue. As a result, continuum models that do not account for the dispersion are not able to
capture accurately the stress—strain response of these layers. The purpose of this paper,
therefore, is to develop a structural continuum framework that is able to represent the
dispersion of the collagen fibre orientation. This then allows the development of a new
hyperelastic free-energy function that is particularly suited for representing the anisotropic
elastic properties of adventitial and intimal layers of arterial walls, and is a generalization of
the fibre-reinforced structural model introduced by Holzapfel & Gasser (Holzapfel & Gasser
2001 Comput. Meth. Appl. Mech. Eng. 190, 4379-4403) and Holzapfel et al. (Holzapfel et al.
2000 J. Elast. 61, 1-48). The model incorporates an additional scalar structure parameter
that characterizes the dispersed collagen orientation. An efficient finite element implemen-
tation of the model is then presented and numerical examples show that the dispersion of the
orientation of collagen fibres in the adventitia of human iliac arteries has a significant effect
on their mechanical response.

Keywords: anisotropy; constitutive modelling; arterial layers; arterial wall mechanics;
fibre distribution; collagen fibres
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1. INTRODUCTION

In a soft biological tissue, as for every solid with a
microstructure, there is a correlation between its
internal structure and its macroscopic mechanical
properties. Continuum-based constitutive relations
describe the gross behaviour that results from the
internal constitution, and their development for soft
biological tissues has been an area of active research for
several decades. Constitutive relations are of funda-
mental importance for the solution of problems in

T Author for correspondence (gh@biomech.tu-graz.ac.at).
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continuum mechanics since without them, from the
mathematical point of view, the system of equations
that governs the mechanics is not solvable.

Extensive experience reveals that many clinical
interventions involving soft biological tissues can be
studied within the context of continuum mechanics, as
the example of arterial clamping discussed by Gasser
et al. (2002) illustrates. The solution of boundary-value
problems can help in understanding mechanically
dominated clinical treatments, such as balloon angio-
plasty (Holzapfel et al. 2002b), and therefore, in
principle, contribute to their improvement. Such
solutions can also help to understand better arterial

© 2005 The Royal Society
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failure mechanisms, such as in dissection (Roach &
Song 1994) and rupture of aneurysms (Humphrey &
Canham 2000), and they have the potential to assist in
the development of tissue engineering (Butler et al.
2000). For a detailed review of the potential of
continuum mechanics in understanding the mechanics
of clinical applications, the reader is referred to the
recent review article by Humphrey (2003), and for an
overview of the biomechanics of soft tissues see the
volumes edited by Holzapfel & Ogden (2003, in press).

Constitutive equations are also critical for obtaining
a deeper insight into the physiological and the
pathological load carrying mechanisms in soft biologi-
cal tissues. In particular, structural constitutive
models, which are the focus of this paper, are best
suited for the study of the structural and functional
interrelation in response to changes in the mechanical
loading. Such models attempt to integrate information
on tissue composition and structure, and they therefore
include more information about the tissue than purely
phenomenological models. Moreover, a structural
approach must account for the internal load carrying
mechanisms of the individual constituents of the tissue,
and this then increases its predictive capability
compared with a phenomenological approach.

Soft biological tissue consists primarily of various
types of cells, an extracellular matrix, and abundant
water. Numerous cell types sense and convert mechan-
ical stimuli (signals) into bioelectrical and biochemical
signals and activate the tissue’s homeostatic tendency
to adapt in response to changes in its mechanical
environment. Individual cells probably respond to
conformational changes of molecules (although this is
not clear), but macroscopic continuum quantities such
as stress and strain will nevertheless continue to be
convenient metrics for relating the adaptation of the
tissue to a particular mechanical stimulus (Humphrey
2001). Hence, realistic constitutive modelling of soft
biological tissues is a prerequisite for quantifying
changes in their structure and function in response to
altered mechanical stimulus.

Insight into the structural organization of the
complex three-dimensional elastin, collagen and
smooth muscle arrangement within the arterial wall
has been obtained by application of polarized light
microscopy to stained arterial tissue, as in the extensive
investigations by Canham and co-workers (Canham
et al. 1989; Finlay et al. 1995, 1998). These studies
illustrate clearly the dispersion of the structural
orientation in the adventitial and intimal layers,
which contrasts with the consistently close to circum-
ferential organization in the media. Based on this
histological evidence, the primarily goal of the present
work is to introduce a hyperelastic free-energy function
that is motivated by the anisotropic structural arrange-
ment of arterial layers and, in particular, allows the
dispersion of the collagen fibre orientation to be
incorporated. A crucial issue is therefore the develop-
ment of a framework that is particularly suitable for
characterizing the dispersion of the collagen fibre
orientation in a continuum sense.

Structurally based constitutive models have been
developed for a variety of intact tissues and tissue
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components. Perhaps the most complete approach has
been presented by Lanir (1983). In arterial wall
mechanics fibre-reinforced models, where the collagen
fibres are assumed to be embedded in an isotropic
groundmatrix’, have become an attractive mechanical
approximation to the tissue composition (Holzapfel
et al. 2000). The histology of arterial tissue shows that
collagen fibres are crimped in the unstressed tissue
(Lanir 1983), and this fact motivated the introduction
of statistical distribution functions in order to capture
the waviness of the collagen fibres (Wuyts et al. 1995;
Zulliger et al. 2004). It is worth noting that the idea of
crimped collagen fibres in the unstressed arterial tissue
is about half a century old and dates back to the work of
Roach & Burton (1957).

In the anisotropic elastic energy function proposed
by Holzapfel et al. (2000) and Holzapfel & Gasser
(2001) it was assumed that the collagen fibres are
perfectly aligned. This model works well for the media,
but it does not reflect the behaviour of the intima and
adventitia, for which there is significant fibre dis-
persion. In the formulation introduced here, therefore,
we include a measure of the dispersion of collagen
orientation, thereby generalizing the model of Holzapfel
et al. (2000) and Holzapfel & Gasser (2001). In
particular, a scalar structure parameter representing
the diversity of the collagen arrangement enters the
hyperelastic formulation. This generalization has sig-
nificant consequences for the mechanical response of
the model. Note that the traditional definition of a free-
energy function, as is adopted here, requires the use of a
stress-free reference configuration. Generally, however,
a compatible stress-free configuration of the arterial
wall does not exist and, in order to incorporate the
effect of residual stress, several approaches are possible.
For example, it can be assumed that such a configur-
ation exists globally (at least as an approximation), as
is done in the ‘opened-up geometry’, which is achieved
experimentally by a radial cut of a cylindrical arterial
specimen; see, for example, Fung (1993) and Holzapfel
et al. (2000). An alternative is to adopt an incompatible
‘virtual’ stress-free configuration; see, for example,
Lubarda & Hoger (2002) and references therein, and
the recent contribution by Stalhand (2005).

In §2, an overview of the arterial wall is provided from
the biomechanical perspective. This includes discussion
of arterial histology and of the typical mechanical
properties of the layers. The structural constitutive
formulations that are available in the literature are then
reviewed. In §3, the underlying continuum mechanical
framework is summarized, and particular emphasis is
given to the continuum representation of dispersed fibre
orientations. Section 4 focuses on the introduction of a
new hyperelastic model for arterial layers. Key issues are
the representation of a transversely isotropic distri-
bution of the orientation of collagen fibres and the
associated particularization of the anisotropic free-
energy function for arterial layers, as discussed in

'The term groundmatrizis used here to include all the material except
collagen, in contrast to usage in the medical literature, which implies
exclusion of cells.
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helically arranged fibre-
reinforced adventitial layer

transversely isotropic fibre-
reinforced medial unit

helically arranged fibre-
reinforced intimal layer

collagen fibres
elastic lamina externa
collagen fibril
smooth muscle cell
eastic fibril

elastic laminainterna
endothelial cell

Figure 1. Histomechanical idealization of a healthy elastic artery with non-atherosclerotic intimal thickening. It is composed of
three layers: intima (I), media (M), adventitia (A). I is the innermost layer consisting of a single layer of endothelial cells, a thin
basal membrane and a subendothelial layer. The subendothelial layer is comprised mainly of thinly dispersed smooth muscle cells
and bundles of collagen fibrils. M is composed of smooth muscle cells, a network of elastic and collagen fibrils and elastic laminae
which separate M into a number of transversely isotropic fibre-reinforced units. A is the outermost layer surrounded by loose
connective tissue. The primary constituents of A are thick bundles of collagen fibrils arranged in helical structures.

§§4.1 and 4.2, respectively. In §4.3 the required
expressions for an efficient finite element implementation
of the proposed model are summarized. Finally, the
model is particularized on the basis of experimental data
from the adventitia of human iliac arteries, and two
numerical examples are used, in §5, to demonstrate the
efficacy of the proposed model. These are inflation of a
thin-walled tube and uniaxial tension of rectangular
specimens from the circumferential and axial directions of
a tube.

2. THE ARTERIAL WALL FROM A
BIOMECHANICAL POINT OF VIEW

This section is included in order to summarize the
essential histological and biomechanical features of the
arterial wall and provides basic information for its
constitutive modelling. It is axiomatic in continuum
mechanics that the properties of a material result from
its internal constitution, which includes the distri-
bution, orientation, and interconnections of its con-
stituents. Hence, we start this section with a brief
review of (human) arterial histology in §2.1, which is
addressed particularly to readers without a background
in biology or physiology and complements the discus-
sion provided by Holzapfel et al. (2000). The charac-
teristic mechanical properties of the arterial wall are
then summarized in §2.2, while §2.3 contains a review
of constitutive models for arteries with particular
emphasis on structurally-based formulations.

For a more detailed exposition of the different
interrelated arterial components and the overall func-
tioning of the blood vessel see, for example, the reviews
by Rhodin (1980) and Silver et al. (1989). Qualitative
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and quantitative details of the three-dimensional
structural organization of arteries are discussed in
Canham et al. (1989) and Finlay et al. (1995).

2.1. Arterial histology

Arteries can be roughly subdivided into two types:
elastic and muscular, although there are arteries that
are intermediate between both types. Elastic arteries
have relatively large diameters and are located close to
the heart, while muscular arteries are located at the
periphery (except in the case of coronary arteries). We
focus attention on the histology of arterial walls
composed of three distinct layers, the intima, the
media and the adventitia. Moreover, we discuss the
constituents of arterial walls from the mechanical
perspective and introduce a histomechanical idealiz-
ation of an elastic artery with non-atherosclerotic
intimal thickening, as illustrated schematically in
figure 1. Note that this is somewhat different from the
corresponding figure shown in Holzapfel et al. (2000).

2.1.1. Intima. The intima is the innermost layer of the
artery. It comprises primarily a single layer of
endothelial cells lining the arterial wall, resting on a
thin basal membrane, and a subendothelial layer of
varying thickness (depending on topography, age and
disease). The subendothelial layer, as considered in the
present work, develops due to diffuse (non-athero-
sclerotic) intimal thickening, a homeostatic reaction of
the intima that tends to restore baseline levels of the
stress (Glagov et al. 1993), and it is present even in the
very early stages of life (Hartman 1977).
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While the endothelial layer does not contribute
significantly to the load-carrying capability of the wall,
the subendothelial layer can do so. The thickness of the
subendothelial layer ranges from almost non-existent
up to being geometrically dominant; see, for example,
the investigations on coronary arteries in Hartman
(1977), Canham et al. (1989) and Holzapfel et al. (in
press). The subendothelial layer of coronary arteries
studied by Canham et al. (1989) was dominated by
collagen with thinly dispersed smooth muscle cells (the
predominant cell type in the subendothelial layer
(Rhodin 1980)) throughout the layer. Its architecture
seems to be associated with intimal fibromuscular
hypertrophy, where compact fibrocellular layers are
formed, resembling the media (Glagov et al. 1993). The
high content of collagen, primarily of types I and III
(von der Mark 1981; Shekhonin et al. 1985), suggests its
mechanical dominance, which has recently been con-
firmed for coronary arteries by Holzapfel et al. (in
press). For a recent review of vascular collagen in
general the reader is referred to Plenz et al. (2003).

The orientation of the collagen fibres in the
subendothelial layer is not uniform through the
thickness of the layer. There is a distinctive organiz-
ation of multilayered fabric of collagen in the sub-
endothelium, which structurally separates the
subendothelial layer. For example, five separate layers
with differently aligned families in coronary arteries
(Canham et al. 1989) and three layers in brain arteries
are found (Finlay et al. 1995). Moreover, the distinct
families of collagen fibres in the subendothelium are
characterized by large deviations of individual collagen
fibres from the mean orientations. There is also elastin
present in the subendothelium; it is arranged in a three-
dimensional network of elastic fibres (Rhodin 1980).

For the sake of completeness it should be noted that
the intima thickens and stiffens locally with athero-
sclerosis, which involves deposition of fatty substances,
calcium, collagen fibres, cellular waste products and
fibrin (Hartman 1977; Stary 2003). These pathological
changes are associated with significant alterations in
geometry and in the mechanical properties of the arterial
wall, to the extent that the mechanical contribution of
the diseased intima may dominate that of the other
layers. In particular, the distribution of collagen in the
different types of tissue changes significantly; see
Shekhonin et al. (1985) for a detailed investigation of
collagen in the regionally thickened intima, lipid streaks,
fibrous plaques and the fibrous cap.

2.1.2. Media. The media is the middle layer of the
artery and consists of a complex three-dimensional
network of smooth muscle cells, elastin and bundles of
collagen fibrils (Clark & Glagov 1979). According to
Rhodin (1980) the fenestrated elastic laminae separate
the media into a varying number of well-defined
concentrically fibre-reinforced medial layers. The alter-
nating layers result from the repeating of discrete
(basic) structural and functional units called muscu-
loelastic fascicles (Clark & Glagov 1979). The thickness
of these units is independent of the radial location in the
wall and the number of units increases with increasing
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medial thickness. The elastin pattern loses its organiz-
ation toward the periphery (Roach & Song 1994) so
that the laminated architecture of the media is hardly
present in muscular arteries.

The media is separated from the intima and
adventitia by the so-called internal elastic lamina and
external elastic lamina, respectively (the latter is
absent in cerebral blood vessels). In muscular arteries
these laminae appear as prominent structures, whereas
in elastic arteries they are hardly distinguishable from
the regular elastic laminae. The elastin, bundles of
collagen fibres and smooth muscle cells and their
interconnections together constitute a continuous
fibrous helix (Schultze-Jena 1939; Staubesand 1959).
The helix has a small pitch so that within the media it is
almost circumferentially oriented. Moreover, polarized
light microscopy (Canham et al. 1989; Finlay et al.
1995) has shown that collagen, about 30% of type I and
70% of type III (von der Mark 1981; Shekhonin et al.
1985), and smooth muscle cells in the media are
consistently circumferentially and coherently aligned.
This structured arrangement gives the media an ability
to resist high loads in the circumferential direction.
There is no significant difference in the distribution of
collagen in the media of normal and atherosclerotic
arteries (Shekhonin et al. 1985).

2.1.3. Adventitia. The adventitia is the outermost layer
of the artery and consists mainly of fibroblasts and
fibrocytes, histological ground substance (henceforth
referred to collectively as groundmatriz) and collagen
fibres organized in thick bundles. The adventitia is
surrounded continuously by loose connective tissue and
its outer boundary is not clearly defined. The thickness
of the adventitia depends strongly on the physiological
function of the blood vessel and its topographical site.

The collagen fibres, primarily of type I (von der
Mark 1981), are arranged within the groundmatrix and
form a typically fibrous tissue. Polarized light
microscopy of the structure of the adventitia has
shown that the collagen forms two helically arranged
families of fibres, within which the individual collagen
fibres have a large deviation from their mean orien-
tations (Canham et al. 1989; Finlay et al. 1995).

The collagen contributes significantly to the stability
and strength of the arterial wall. In the unstressed
tissue the collagen fibres are embedded in a wavy form
in the soft groundmatrix, which causes the adventitia to
be less stiff than the media in the stress-free configur-
ation. However, at significant levels of strain the
collagen fibres reach their straightened lengths and
the mechanical response of the adventitia then changes
to that of a stiff tube, preventing the artery from
overstretch and rupture. Finally, as for the media, it is
worth noting that there is no significant difference in
the distribution of collagen in the adventitia of normal
and atherosclerotic arteries (Shekhonin et al. 1985).

2.2. Mechanical properties of the arterial wall

The development of reliable constitutive models
requires, beside histological knowledge, a detailed study
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of the typical mechanical response of the arterial wall.
The model’s reliability is strongly tied to the quality
and completeness of available experimental data. Roy
(1880-82) had correctly identified many of the general
characteristics exhibited by arteries more than 100
years ago. Subsequently, a number of experimental
techniques have been developed for investigating
arterial tissue at both macroscopic and microscopic
levels. For an overview of experimental test methods,
see, for example, Humphrey (2002) and Hayashi (2003)
and the references therein.

2.2.1. Basic arterial properties. In accordance with
histology, as indicated in §2.1, the mechanical proper-
ties of arteries change along the arterial tree; see, for
example, the active and passive data from canine
arteries in Cox (1978). Although this variation is
significant, the general mechanical characteristics
exhibited by arterial walls are the same.

The highly organized structural arrangement causes
the arterial wall (and its layers) to be anisotropic, and
much attention has been directed towards the rigorous
quantification of material symmetry. To the authors’
knowledge the paper by Patel & Fry (1969) contains
the first study on arterial anisotropy, suggesting that
the wall is cylindrically orthotropic; this observation is
generally accepted within the scientific community; see,
for example, Weizsdcker & Pinto (1988).

Based on histology, an artery can be classified
mechanically as a ‘mixture composite’, i.e. as a solid—
fluid mixture. The solid part is primarily a composite of
elastin, collagen, and smooth muscle cells (Humphrey
2002). For many problems of interest stress-induced
movement of fluid in and out of the wall can be
neglected. Hence, the arterial wall can be, and most
commonly is, regarded as a homogenized solid, which is
sufficiently accurate for most experimental and theo-
retical studies of the stress distribution in the wall.
Under these conditions, arteries behave as nearly
incompressible solids at physiological loads (Carew
et al. 1968; Chuong & Fung 1984).

Healthy arteries are highly deformable composite
structures and exhibit a nonlinear (Roy 1880) stress—
strain response with a typical stiffening at around the
physiological strain level (Abe et al. 1996). In this
respect arterial tissue behaves similarly to rubber. The
stiffening of arterial tissue is assumed to be based on the
recruitment of the (anisotropically distributed)
embedded wavy collagen fibrils (Roach & Burton
1957; Samila & Carter 1981) which leads to the
aforementioned anisotropic mechanical behaviour of
arteries that contrasts with the isotropy of rubber.

2.2.2. Axial pre-strain, stress-free and load-free con-
figurations. In general, a vessel embedded in the body is
under axial pre-strain; hence, it shortens on excision
from the body, as was first reported by Fuchs (1900).
Length—force characteristics of in wvitro tube tests on
animal tissue indicate a ‘crossover length’ (Van Loon
et al. 1977; Weizsicker et al. 1983) and by dividing it by
the load-free length an axial ‘crossover stretch’ can be
defined. Interestingly, the axial ‘crossover stretch’ is

J. R. Soc. Interface (2006)

approximately equal to the axial in situ pre-stretch
(Van Loon et al. 1977; Weizsicker et al. 1983). Inflation
at axial stretches lower/higher than the ‘crossover
stretch’ is associated with decreasing/increasing axial
load in the artery. In addition, under inflation at the
‘crossover strain’ the axial load maintains an approxi-
mately constant value (Van Loon et al. 1977,
Weizsicker et al. 1983), as observed for animal tissue.
Hence, the in situ axial pre-stretch probably enables
cyclic axial strain in the arterial wall to be avoided
during the blood pressure cycle. More recently,
Schulze-Bauer et al. (2003) have pointed out that
in situ axial stretches of non-pressurized human iliac
arteries are not representative of axial in situ stretches
under pressurized (in vivo) conditions.

The arterial wall continually adapts to its mechan-
ical environment (due to, for example, growth, atrophy,
remodelling, repair, ageing, and disease) and thus
undergoes several irreversible processes. All these
processes take place in the spatial configuration of the
arterial wall; hence, the existence of a compatible
stress-free (reference) configuration is unlikely. As a
consequence, the unloaded configuration of an artery is
residually stressed, as originally reported by Bergel
(1960); see also Chuong & Fung (1986). Intact
unloaded arterial rings ‘open up’ in response to a cut
in order to minimize their stored strain energy and
release the residual circumferential stress. Moreover,
the different layers (intima, media and adventitia) are
in general differently stressed in the unloaded configur-
ation (Greenwald et al. 1997). Recently, it has been
reported that small longitudinal strips can warp when
cut from the arterial wall, thereby relieving residual
azial stress (Schulze-Bauer et al. 2002; Holzapfel et al.
submitted), and a model that takes account of the
resulting three-dimensional residual stress distribution
has been developed by Holzapfel & Ogden (submitted).
Finally, it is emphasized that it is of crucial importance
to identify the residual stress in an intact unloaded
arterial ring in order to predict reliably the state of
stress in the loaded arterial wall; see, for example,
Chuong & Fung (1983) and Holzapfel et al. (2000).

2.2.8. Inelastic effects. Dynamical experiments on
arterial tissue have demonstrated their pronounced
viscoelastic response. In the absence of muscle tone,
arteries exhibit hysteresis under cyclic loading, stress
relaxation under constant extension and creep under
constant load. In particular, during cyclic testing it has
been found that arterial walls exhibit hysteresis that is
relatively insensitive to strain rate over several decades
(nearly constant damping and independent of fre-
quency; Fung 1993); for numerical modelling see
Holzapfel et al. (2002a). Viscous effects typically
increase from proximal arteries of the elastic type to
distal arteries of the muscular type. Movement of
intraarterial fluid and the dissipative mechanisms of
smooth muscle cell deformation probably dominate the
time-dependent response of the blood vessel.

Testing of arterial tissue typically displays pro-
nounced stress softening under the first few cycles of
loading. Arteries exhibit a nearly repeatable cyclic
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Table 1. Some properties of the arterial wall and associated references.

m properties change along the arterial tree Roy (1880-82), Cox (1978)
U cylindrical orthotropy Patel & Fry (1969),
Weizsécker & Pinto (1988)
G incompressibility Carew et al. (1968),
\ I Chuong & Fung (1984)
nonlinear stress strain response Roy (1880-82)
- highly deformable Roy (1880 82)
w axial in situ pre-strain Fuchs (1900)
H residual stress in the load-free configuration Bergel (1960),
Chuong & Fung (1986),
: Greenwald et al. (1997),
—— Holzapfel et al. (submitted)

oo viscoelasticity Fung (1993)

‘zt gi pre-conditioning phenomena Fung (1993)

_D_g 8 55 damage based softening and residual overstretch Oktay et al. (1991)

QlES
behaviour once stress softening is complete, and the (Humphrey 2002). According to this hypothesis,
artery is then said to be pre-conditioned (Fung 1993). several contributions have attempted to quantify the
The underlying microstructural mechanisms of pre- nonlinear mechanics of the layered arterial wall, and
conditioning are still unknown, but macromolecule have proposed two-layer models, with separate mech-
unfolding may play an important role. anical properties for the media and the adventitia (von

Once the loading of the arterial wall exceeds its Maltzahn et al. 1981; Vito & Demiray 1982; Rachev
physiological range, as occurs during mechanical treat- 1997; Greenwald et al. 1997; Stergiopulos et al. 2001;
ments such as percutaneous transluminal angioplasty Gasser et al. 2002). Models of the individual arterial
(Block 1984), damage and failure mechanisms are layers based on purely phenomenological constitutive
activated. The associated inelastic phenomena lead to descriptions do inherently include some structural
significant changes in the mechanical behaviour (Gasser information. Moreover, anisotropic models that include
& Holzapfel 2002), and residual overstretch and a priori preferred material directions can also be viewed
damage-based softening (Oktay et al. 1991) of the tissue as including some structural information; however, this
occurs. Probably there is some correlation between the is not what is meant by a structural model throughout

mechanisms of pre-conditioning and inelastic phenom- this paper. Structural constitutive formulations, as
ena when exceeding the physiological loading. defined herein, allow a clear relation between the load

For a summary of references documenting various carrying constituents of the arterial wall and the
material properties see table 1. particular contributions to the free energy of the

Interface

model. A structural model facilitates our understanding

- =

< s o . of the tissue’s function and provides an insight into its
Z| 35 2.3. Constitutive models for the arterial wall ! et provi . s

%5 2w response to a given mechanical loading (Lanir 1983).
[} E§ Once the artery is pre-conditioned, it may be treated as A structural approach models the load carrying

pseudoelastic, as proposed by Fung et al. (1979), i.e. mechanisms according to the underlying histology,
loading and unloading are represented by separate and its predictive capability therefore exceeds that of a
elastic laws. The pseudoelastic modelling of the artery purely phenomenological approach.
is a simplification, but it is particularly useful for In the following the structural models for arterial
studying the physiology of arteries; however, certain  tissue are reviewed briefly. The constrained mizture
biomechanical problems require a viscoelastic (Hol- model (Humphrey & Rajagopal 2002, 2004) has been
zapfel et al. 2002a) or poroelastic (Simon et al. 1993) developed to capture arterial adaptation, with atten-
theory in order to capture accurately the mechanical tion to individual constituents such as endothelial cells,
response. The arterial wall, however, is frequently smooth muscle cells, fibroblasts and collagen that turn
regarded simply as hyperelastic, and all inelastic over at different rates rather than on overall changes in
phenomena are neglected, which is also the intention  the vessel. Hence, it is well suited for capturing basic
of the model proposed in §4.2. processes by which arterial adaptation occurs (for
Constitutive models of the arterial wall are either example, organization of the constituents in stressed
based on a purely phenomenological approach configurations). The concept has not yet been fully
(Demiray 1972; Vaishnav et al. 1973; Chuong & Fung exploited and has not been particularized in the sense
1983; Takamizawa & Hayashi 1987; Horgan & Sacco- that the anisotropic structure of the arterial wall can be
mandi 2003) or take structural information of the captured adequately.
underlying histology into account (Wuyts et al. 1995; The (statistical) structural model proposed in
Holzapfel et al. 2000; Humphrey & Rajagopal 2002; (Wuyts et al. 1995) considers the media to be the only

Interface

3 2. Zulliger et al. 2004). Moreover, the demarcation mechanically relevant layer and takes its mechanically
z! é: between the different arterial layers and the constituent important constituents, i.e. elastin, collagen and
80 ;g regularity within each layer suggests that it may be  smooth muscle cells, into account. The model assumes
=1 F% reasonable to assume that the constitutive properties that the collagen fibres are corrugated (wavy) and

vary by layer but are homogeneous within each layer embedded in an isotropic and linearly elastic matrix

J. R. Soc. Interface (2006)
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that represents the elastin and smooth muscle cells. The
wavy embedded collagen fibres are characterized by
their unfolded lengths and a linear stress—strain relation
when stretched, similarly to the modelling assumptions
in Decraemer et al. (1980). It is assumed that the
unfolded fibre length is distributed according to a
Lorentz distribution, which captures the non-uniform
waviness of the collagen fibres. Hence, pressurization of
the vessel subsequently straightens the collagen fibres
and causes a nonlinear stress—strain response of the
tissue, as observed experimentally. The modelling
assumptions applied are motivated by the histology of
the media; however, the experiments described in
Samila & Carter (1981) showed that collagen fibres do
not straighten out completely even under high
stretches. The findings of Samila & Carter (1981)
suggest that the distribution of interfibrilar spaces may
interfere with the collagen fibres, a mechanism that is
not considered in the model proposed by Wuyts et al.
(1995). Moreover, the evaluation of the stress-strain
law involves intensive numerical computations, which
seems to be too time consuming for an efficient finite
element implementation of the model.

A more general fibre-reinforced constitutive formu-
lation has been introduced by Holzapfel & Gasser
(2001) and applied to arterial layers by Holzapfel et al.
(2000, 2002a) where two families of collagen fibres are
embedded in an isotropic non-collagenous groundma-
trix. Each fibre is subjected to a uniaxial strain, which is
the resolution of the macroscopic strain tensor in the
fibre direction, i.e. perfect matrix—fibre bonding is
assumed. In addition, the collagen fibres have no
compressive strength and they would buckle under
compressive load. The mechanical response of the
embedded collagen is described by a stress—stretch
law, and the unfolding is captured in a phenomenolo-
gical sense. This makes an efficient finite element
implementation feasible, which, for the elastic part, is
illustrated in Gasser & Holzapfel (2002). These
constitutive and numerical frameworks allow the
investigation of clinically relevant mechanical problems
(Gasser et al. 2002; Holzapfel et al. 2002b).

In a recent paper (Zulliger et al. 2004) the phenom-
enological stress—stretch law from Holzapfel et al. (2000)
has been developed further for the collagen fibres by
including similar ‘unfolding-ideas’ to those presented by
Wuyts et al. (1995). In particular, an ‘engagement
strain’ for the individual collagen fibres, based on a log-
logistic distribution, is introduced. However, the same
drawbacks as those discussed for the model in Wuyts
et al. (1995) apply to that in Zulliger et al. (2004), i.e.
neglect of the effect of interfibrilar constituents on the
unfolding of the collagen fibres, and the need for
intensive numerical computations (in particular, for
the solution of a convolution integral) to provide the
stress—strain law.

The structurally motivated models proposed by
Wuyts et al. (1995), Holzapfel et al. (2000), Holzapfel
& Gasser (2001) and Zulliger et al. (2004) share a
common limitation in the representation of the archi-
tecture of the arterial wall, as discussed in the following
section.

J. R. Soc. Interface (2006)

2.8.1. Limitations of existing constitutive formulations.
A common assumption of the structural formulations
presented in Wuyts et al. (1995), Holzapfel et al. (2000),
Holzapfel & Gasser (2001) and Zulliger et al. (2004) is the
characterization of the embedded collagen by means of
parallel aligned fibres within each family of collagen
fibres.? In accordance with arterial histology, as dis-
cussed in §2.1, this assumption seems to represent the
architecture of the media, but it may not be appropriate
for modelling the distribution of collagen in the intima
and the adventitia. For example, at 30 mmHg arterial
pressure, the average circular standard deviation of the
collagen orientation (which provides a measure of
dispersion about the mean orientation) in the adventitia
and media offive brain arteries is quantified as 36° and 9°,
respectively (Finlay et al. 1995).

The models in Wuyts et al. (1995), Holzapfel et al.
(2000), Holzapfel & Gasser (2001) and Zulliger et al.
(2004) do not include the effect of the dispersion of the
collagen fibres, and the associated mechanical conse-
quences are not discussed in the literature. The
(idealized) structural arrangement proposed in these
papers causes the mechanical response of the tissue
perpendicular to the fibres to be based solely on the
groundmatrix. Hence, under certain circumstances the
tissue can accumulate large deformations without any
of the embedded collagen fibres being stretched.

In order to illustrate this point, we investigate a
representative example of a simple tensile test of an
adventitial strip in circumferential and axial directions.
From experimental studies it is known that the
mechanical responses of adventitial strips are very
soft at low stretches and stiffen rapidly at higher
stretches (see, for example, Holzapfel et al. 2004b, in
press). This is suggestive of a soft groundmatrix with
embedded collagen fibres that stiffen rapidly when
uncrimped. According to the structural assumptions in
Holzapfel et al. (2000), Holzapfel & Gasser (2001) and
Zulliger et al. (2004), the collagen is embedded as two
families of fibres that are symmetrically disposed
relative to the tensile (axial) direction and has no
component in the radial direction. This structural
arrangement in combination with the soft groundma-
trix activates a load carrying mechanism in which the
collagen fibres need to be rotated towards the direction
of the loading until they are able to carry significant
load. This will be illustrated by means of a finite
element computation in §5.2, which shows that the
kinematical assumption just described leads to un-
physical deformation patterns. Moreover, the observed
stiffening of the adventitial strips cannot be predicted
by the models within the typical range of deformation.

Finally, it is worth noting that the elastic potential
proposed in Holzapfel et al. (2000) and Holzapfel &
Gasser (2001) fits experimental data obtained from
uniaxial tests of the media very well, since in this case
the dispersion of the collagen fibre within a particular

It is worth noting that throughout this paper the orientation of
collagen fibres is defined as the average orientation of the corrugated
fibre in the stress-free (reference) configuration. In particular, the
waviness of the collagen fibres should be distinguished from the
dispersion of their orientations.
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family (Canham et al. 1989; Finlay et al. 1995) seems to
be small enough to be consistent with the structural
assumptions of the model.

3. CONTINUUM MECHANICAL FRAMEWORK

In this section the basic continuum mechanical frame-
work is introduced in order to establish the notation to
be used subsequently. For relevant treatments of
nonlinear continuum mechanics the reader is referred
to Ogden (1997) and Holzapfel (2000). Here we
summarize the finite deformation kinematics and the
equations of hyperelasticity. A crucial part of this
section is dedicated to the continuum representation of
distributed orientations of embedded (collagen) fibres.

3.1. Kinematics

Let Qo be a (fixed) reference configuration of the
continuous body of interest (assumed to be stress free).
We use the notation x : Q) — R? for the deformation,
which transforms a typical material point X€Q to a
position z=x(X)EQ in the deformed configuration,
denoted Q. Further, let F(X)=0x(X)/0X be the
deformation gradient and J(X)=detF(X)>0 the
local volume ratio.

Following Flory (1961) and Ogden (1978), we
consider the multiplicative decomposition

F = (J'°I)F, (3.1)

of F into a spherical (dilatational) part JY*I and a
unimodular (distortional) part F', so that det F'=1. We
use the right and left Cauchy—Green tensors, denoted C
and b, respectively, and their modified counterparts,
denoted C and b, respectively, associated with F. From
equation (3.1) we then have

C=F'F=7"?¢C, C=F"F,
b=FF" =7*b b=FF".

(3.2)
(3.3)

We assume that a fibre is embedded in a continuum and
that its orientation is characterized by the referential
unit vector ag, with |ag|=1. The deformation x maps
the fibre into its current configuration, where the vector
a= Fa defines the spatial orientation, and the stretch
in the direction of the fibre is |a|. For completeness and
subsequent use, we introduce the vector

a= Fa(), (34)

which can be interpreted as the push-forward of aq via
the unimodular part of the deformation gradient, and
coincides with a for isochoric deformations.

3.2. Hyperelastic stress response

In order to describe the anisotropic and hyperelastic
stress response of the arterial tissue, we introduce a set
{A;, Ay} of symmetric (second-order) tensors, which
characterize the structure of the tissue. Moreover, we
postulate the existence of a Helmholtz free-energy
function ¥(C, A, A,), defined per unit reference
volume (also referred to as a strain-energy function or
elastic potential energy function, or simply potential).

J. R. Soc. Interface (2006)

Here, as in Holzapfel et al. (2000), we adopt the
decoupled form

W(C, A, A) =UJ)+W(C, A, A,), (3.5)

where the function Uis a purely volumetric contribution
and ¥ is a purely isochoric contribution to ¥. In the case
of incompressibility, which is assumed for an artery,
U(J) denotes a Lagrange contribution and enforces the
associated kinematical constraint.

From the Clausius—Planck inequality, standard
arguments lead to the well-known equation S=
209 (C, Ay, A,)/0C for the second Piola—Kirchhoff
stress. Equation (3.5) then gives

. aU(J)
S=S8 S th S, =2
vol + Wi vol 9C )
- 3.6
5_2611/(071417142) ( )
B ac '

We shall also require the standard results
aJ 1. .., dC o 1 - -
—==Jct, Z=J1-=CeC
aC 2 " aC 3 ® ’

from tensor analysis (see, for example, Holzapfel 2000),

where [ denotes the fourth-order identity tensor, which,

in index notation, has the form

Dier, = 0101, + 010,k
LKL 5 ;

077 being the Kronecker delta. With these results,
equations (3.6), and (3.6)3 become, after some straight-

forward tensor manipulations and the introduction, asin
Holzapfel (2000), of the hydrostatic pressure p=d U/d J,

S =pJC, §=J7pP: 3, (3.7)

with the (fictitious) isochoric contribution § = 20%¥ /9 C
to the second Piola—Kirchhoff stress. Application of the
fourth-order projection tensor P=1-1C"'®C fur-
nishes the physically correct deviatoric operator in the
Lagrangian description, so that [P : (-)] : C=0. Note
that in the description of an incompressible material the
hydrostatic pressure p becomes a Lagrange multiplier,
which is indeterminate from the deformation alone.

A push forward of equation (3.7) enables the
Kirchhoff stress tensor 7=FSF' to be put in the
decoupled form

(3.8)

and the (fictitious) isochoric Kirchhoff stress

#=2F(3W/9C)F". The fourth-order projection tensor
P=0—1I®I furnishes the physically correct deviato-
ric operator in the Fulerian description, so that

[P:()]:I=0.

T=7T,, +7 with 7, =JpI, T=P: 7,

3.3. Elasticity tensors

An efficient application of a (nonlinear) hyperelastic
constitutive model within the finite element method
requires the derivation of its elasticity tensor, i.e. the
consistent linearization of the underlying stress
response. The material elasticity tensor C is defined
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through dS=C:dC/2, with C=245/dC, and is
represented in the decoupled form through
C=C,,+C. Here, the volumetric and isochoric
contributions, C,y,=208,,/dC, and C=235/4C,
respectively, are defined as in Holzapfel (2000), i.e.

Cvol = f)Cil ® Cil _2Jp|]c_17 (39)
= “ T 2 =23 @ 2=l o &L T -1
C=P:C:P +§J Tr[S’]IP—g(C ®S+S®C™),

(3.10)
where the scalar function p=Jp+ (]2(3])/6(]7 the

Lagfang_i%n (fictitious) elasticity tensor € :=4J*3
(60*W /3 C") and the fourth-order tensor

1

I lukn = 5 (Cix i + Ci' Ci),
are introduced. Moreover, the referential trace operator
Tr[-]:=[-]: C and the referential fourth-order projection

tensor P : =I, —% C'®C™ are utilized.
A standard push-forward of equations (3.9) and
(3.10) defines the spatial elasticity tensor (Miehe 1994;

Holzapfel 2000), i.e.

Coo = PI®T —2Jpl,

_ . 2 2 o (3.11)
C=[P’:C:P+§tr[T]P—§(I®T+T®I),

where € denotes the Fulerian (fictitious) elasticity tensor
and the spatial trace operator tr[-]:=[-]:I is utilized.
The FEulerian (fictitious) elasticity tensor can be inter-
preted as the push-forward of C_ via the unimodular
deformation, i.e. [é]ijkl = FZ'IFj.]FkKFlL[C]IJKL' Whlle
equations (3.9)—(3.10) and (3.11) are compact notations
for the material and spatial elasticity tensors, an efficient
finite element implementation requires these
expressions to be elaborated for a particular constitutive
model.

3.4. Continuum representation of distributed
fibre orientations

The objective of this section is the introduction of a
concept that allows directional data to be accounted
for, so that distributed fibres are represented in a
continuum sense. The concept is based on the definition
of a generalized structure tensor.

We assume the existence of a density function p(M ),
sometimes referred to as an orientation density function
(Lanir et al. 1996), which characterizes the distribution of
fibres in the reference configuration Q, with respect to the
referential orientation M. The vector M is an arbitrary
unit vector located in three dimensional Eulerian space.
Thus, |M|=1. By characterizing M in terms of two
FEulerian angles © € [0,7] and @ € [0,27] we obtain

M(O, ) = sin O cos Pe; + sin O sin Pe, + cos Oes,
(3.12)

where {e;, e, es} denote the axes of a rectangular
Cartesian coordinate system (see figure 2). Note that each
fibre is double counted by the above ranges of values of the
Euler angles, i.e. for each M, — M is also included.

J. R. Soc. Interface (2006)

X3

Figure 2. Characterization of an arbitrary unit direction vector
M by means of Fulerian angles @ €[0,7] and ®<[0,27] in a
three-dimensional Cartesian coordinate system {e;, s, e3}.

The density function p(M) is defined such that
p(M(O, ®))sin ©dOdP represents the (normalized)
number of fibres with orientations in the range
[(0,0+d6), (&,0+dd)], and it has to obey the
symmetry requirement p(M)=p(—M). In addition,
it is assumed that p(M) is normalized, such that

1

g (3.13)

J p(M(®,9))dw =1
w
holds, where w is the unit sphere and dw=sin ®dO®d®.
Subsequently, p(M ) is limited to general orthotropic
distributions, where, without loss of generality, the
preferred directions of the distribution are assumed to
coincide with the axes {e;, e, e3} of the underlying
Cartesian coordinate system.
For reasons that will become clear in §4.2, we
introduce a (symmetric) generalized structure tensor of
second order, defined by

1

- J p(M(0, 8))M(0, 9)® M(6, d)dw,

(3.14)

which represents the fibre distribution. On use of
equation (3.12) the generalized structure tensor (3.14)
can be written in the compact form

where there is summation over ¢ and j from 1 to 3 and
the coefficients a;;= a;; are defined by
p(M)sin® O cos® ddOAD,

“1 =
[0}

p(M) sin® @ sin® dOd P,

09 =E
w

tgy =7 p(M) cos® @ sin OdOd P,

[0}

(3.16)

g = p(M) sin® @ sin @ cos dAOAD,

p(M) sin® @ cos O sin ¢dOAP,

[0}

oy = p(M) sin* @ cos Ocos dAOAD.
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Consequently, once the density distribution function is
given, equations (3.15) and (3.16) allow the compu-
tation of the generalized structure tensor H, which is an
alternative measure of the fibre distribution. Note that
the generalized structure tensor introduced in (3.14)
differs significantly from the second-order fabric tensor
that is frequently used to approximate the density
function p(M) in the context of defect distributions
(Kanatani 1984; Krajcinovic 1996).

Finally in this section we note that other papers
that account for the distribution of fibre orientations
are based largely on the work of Lanir (1983) and
include Hurschler et al. (1997), Billiar & Sacks (2000)
and Sacks (2003). Their approach is very different
from that adopted here and, in particular, does not
involve the use of invariants. In a recent paper (Freed
et al. in press) another approach has been adopted for
a single family of fibres (in respect of aortic heart
valve tissue), with the construction of the constitutive
law having some features in common with the present
paper. In particular, it involves a structure tensor
that is similar to H.

4. A CONSTITUTIVE MODEL FOR ARTERIAL
LAYERS

A constitutive model aims to reflect the basic
mechanical properties of a material that result from
its internal constitution. Here, we develop a new
constitutive model for the arterial wall that reflects
its histology and the experimentally observed mech-
anical properties discussed in §2. In §4.1 we particu-
larize the continuum representation of distributed
fibres as a fundamental prelude to the introduction of
the new model for the arterial layers that is discussed
in §4.2. The associated Kirchhoff stress and the
spatial elasticity tensors are then derived in §4.3,
which provide the basis for an efficient finite element
implementation of the model. We emphasize that we
focus only on the passive behaviour of arteries, and
in vivo (active) effects are not therefore considered in
the present work.

4.1. Transversely isotropic representation of
a family of collagen fibres

In this section the continuum representation of
distributed collagen fibres, as introduced in §3.4, is
particularized. It is assumed that in each arterial layer
two families of collagen fibres are embedded. As distinct
from Holzapfel et al. (2000, 2002a), the orientations of
the collagen fibres within each family are dispersed. For
a given family the fibres are distributed with rotational
symmetry about a mean referential (preferred) direc-
tion, say ap (a unit vector), so that the family
contributes a transversely isotropic character to the
overall response of the material. Without loss of
generality, we take the preferred direction aq to
coincide with the Cartesian basis vector es. The density
function is then independent of @, i.e. p(M(O, P))—
p(0). The normalization condition (3.13) then reduces
to J§ p(©)sin ®dO =2, the off-diagonal coefficients
app=0ao3=ay3 of H defined in equation (3.16) vanish,

J. R. Soc. Interface (2006)

and the diagonal terms remaining are, on use of the
normalization condition, given by

1 ™
0] = Qg9 = K, Q33 = 1 _2K, K = Z J p(@)sin3 @d@,
0

(4.1)

where the notation x has been introduced. Conse-
quently, the generalized structure tensor H may be
given in the compact form

H =«I + (1—3k)ay®ay, (4.2)

where I denotes the identity tensor. Hence, H
depends on a single dispersion (structure) parameter
k, which represents the fibre distribution in an
integral sense and describes its ‘degree of anisotropy’.
A remarkable result from the above derivation is that
every transversely isotropic fibre distribution is
represented by a ‘linear mixture’ of I and ag® ag
according to equation (4.2). In general, we can regard
K as a structure parameter that can be obtained from
experimental data, but it is nevertheless instructive to
examine the character of the density function p(@®) for
a specific distribution of fibre orientations, which we
now do in the following.

4.1.1. Illustrative fibre distributions. In order to discuss
the dispersion parameter k we assume that the
embedded collagen fibres are distributed according to
a transversely isotropic and w-periodic von Mises
distribution. Therefore, the standard m-periodic wvon
Mises distribution is modified in order to satisfy the
normalization condition (3.13). The resulting density
function p(®) becomes

_ b exp[b(cos(20) + 1)]
p(6) = 4\/; erfi(v/2b) ,

where b>0 is the concentration parameter associated
with the von Mises distribution, and erfi(z) = —i erf(z)
denotes the imaginary error function (Weisstein 2005),
the error function itself being given by

2 (" 9
erf(z) NG Jo exp(—t”)dt.
Since the von Mises distribution is the projection of the
normal distribution onto the unit circle, the density
function (4.3) can be interpreted similarly as a
projection of the normal distribution onto the unit
sphere (Fisher et al. 1987).

Remark 4.1. In this remark the derivation of (4.3) from
the standard w-periodic won Mises distribution is
discussed briefly. We start with a density function for
the standard m-periodic von Mises distribution, cen-
tered at ®=0, i.e.

__exp(bcos(20))
 2xIy(b)

(4.3)

1 m
p(0) , I(b) = g J exp(b cos ©)dO,
0

(4.4)

where Iy(z) denotes the modified Bessel function of the
first kind of order zero. Integration of (4.4) according to
the normalization condition (3.13) gives, for 6>0, the
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relation

Y . _ exp (—b) erfi(v/2b)
I= Jo p(0®) sin ®dO = N

Finally, equation (4.3) is obtained by the normalization
of p with I, i.e. p(®)=p(0)/I.

The relation between the dispersion parameter x and
the concentration parameter b is illustrated in figure 3,
where k is plotted against b, k being computed by
numerical integration of (4.1); using (4.3). As can be
seen from figure 3, there is a one-to-one relation
between k and b for b6>0. Note that while the von
Mises distribution is defined for b>0, p(®) — 1 as b—0,
so that k=1/3 for b=0 and k€10,1/3].

The lower limit of the dispersion parameter, i.e.
k=0, describes the ideal alignment of collagen fibres,
which is represented by b— o« in (4.3). In this case, the
Dirac delta function characterizes the density function,
and the generalized structure tensor (4.2) reduces to
ag® ay. The upper limit of the dispersion parameter,
i.e. k=1/3, describes the isotropic distribution of the
collagen fibres, which is represented by b—0in (4.3). In
this case the density function is constant, i.e. p=1, and
the generalized structure tensor (4.2) reduces to I.

A graphical representation of the density function
(4.3) is provided in figure 4, in which the surface defined
by the apex of the vector p(M)M is plotted with
respect to the Fulerian angles ® and @. Six different
distributions are shown, corresponding to k=0, 1/15,
2/15, 1/5, 4/15, 1/3. In this representation, the
isotropic distribution (k=1/3) gives a sphere, while
the ideal aligned fibres (k=0) are characterized by an
infinitely long line in the direction of aq. The
transversely isotropic distributions between these
limits are characterized by ‘bone-like’ surfaces, where
a defines their longitudinal axes. Note that for
representative purposes the objects shown in figure 4
are scaled differently.

Due to the symmetry about a the density function
(4.3) can also be represented by means of a two-
dimensional plot. Figure 5 shows this representation
with respect to the FEulerian angle ©. Therein, the
isotropic distribution of the collagen fibres (k=1/3) is
represented by the horizontal line at p=1, while their
perfect alignment (k=0) is characterized by the Dirac
delta function. In between these limits the density
function is typically ‘bell-shaped’. Note that this type of
representation is frequently used in the literature to
present histological data, such as experimentally
determined collagen distributions for planar collage-
nous tissues; see, for example, Sacks (2003).

4.2. Anisotropic hyperelastic formulation

The continuum representation of collagen fibre orien-
tations derived above forms the basis for an anisotropic
hyperelastic formulation for arterial layers, which will
be elaborated in this section. Basically, it follows the
concept proposed in Holzapfel & Gasser (2001) and
Holzapfel et al. (2000), where an additive split of the
energy stored in the groundmatrix and the collagen
reinforcement is assumed. However, the underlying
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Figure 3. Relation between the dispersion parameter x and the
concentration parameter b of the (transversely isotropic) von
Mises distribution.

structural approach enriches this model by including
structural data associated with the dispersion of the
embedded collagen fibres.

In the following the modelling assumptions are
discussed and their mathematical formulation is
introduced. The complex architecture of an arterial
layer is represented mechanically as a fibre-reinforced
composite (Holzapfel & Gasser 2001; Holzapfel et al.
2000) in which two families of collagen fibres are
embedded in an isotropic groundmatrix. Depending on
the particular arterial layer the groundmatrix is
associated with non-collagenous but mechanically
relevant tissue components, such as elastin and smooth
muscle cells in the media. For simplicity and in
accordance with Holzapfel et al. (2000), we assume
that the mean orientations ag,; i=1,2, of the families of
collagen fibres have no radial component. Note,
however, that this assumption seems not to be
supported by arterial histology; see, for example,
Canham et al. (1989) and Finlay et al. (1998). Never-
theless, the three-dimensional nature of the distribution
adopted implies that there are fibres with a component
in the radial direction. An alternative approach for
which there is no such component can be developed by
adopting a two-dimensional fibre distribution locally
within the plane normal to the radial direction. Such a
model requires only a slight modification of the
structure tensor H but is not considered here.

In order to derive the anisotropic hyperelastic
potential ¥ for an arterial layer, it is assumed that it
can be represented by a superposition of the isotropic
potential 'I_/g for the non-collagenous groundmatrix
(indicated by subscript ‘g’), and the two transversely
isotropic potentials ¥;, i=1,2, for the embedded
families of collagen fibres (with subscript ‘f’). Hence,
the free-energy function, which is formally similar to
the formulation introduced in Holzapfel & Gasser
(2001) and Holzapfel et al. (2000), is

lf/((_], Hi) = lpg(é) + Z lpfi(é7 Hi(a'OivK))7 (45)

i=1.2

where the general structure tensor Hy(ag;, k) is defined
in accordance with (4.2) and depends on the mean
orientation ag; of the embedded ith family of collagen
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Figure 4. Three-dimensional graphical representation of the
orientation of the collagen fibres based on the transversely
isotropic density function (4.3).
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Figure 5. Two-dimensional graphical representation of the
(transversely isotropic) von Mises distribution of the collagen
fibres.

fibres and the dispersion parameter « (the same for each
family).

Following Holzapfel & Weizsdcker (1998), we model
the non-collagenous groundmatrix by means of an
incompressible isotropic neo-Hookean model, i.e.
Y, =1c(I;—3), where I, =tr C and c denote the
first invariant of C and the neo-Hookean parameter,
respectively. In order to particularize the transversely
isotropic free-energy function for the ith family of
collagen fibres the form

(€ H) = 2L exp(l, B2 — 1], i=1,2, (46)

H; = «I + (1—3k)(ay;®ay;),
(4.7)

is proposed, where H; : C denotes an invariant of the

symmetric generalized structure tensor H; and the

symmetric modified right Cauchy-Green tensor C; see
Spencer (1984) for a general discussion of invariants of

J. R. Soc. Interface (2006)

this kind. Note that H;: I=1. Moreover, we introduced
the Green-Lagrange strain-like quantity F;,= H;: C —1,
which characterizes the strain in the direction of the
mean orientation a; of the ith family of fibres. In (4.6),
ks >0 is a dimensionless parameter and k; >0 is a stress-
like parameter to be determined from mechanical tests of
the tissue, while a(; and k are structure parameters to be
determined from histological data of the tissue. A basic
assumption in (4.6) is that both families of fibres have the
same mechanical properties, i.e. the same set (kq, k2) of
parameters is applied. Similarly, the same dispersion
parameter k characterizes the distribution of the
collagen fibres within the two families of fibres.

A fundamental hypothesis of the model introduced in
Holzapfel & Gasser (2001) and Holzapfel et al. (2000) is
that the collagen fibres cannot support any compression
and would buckle under the smallest compressive load.
This modelling assumption is not only based on physical
reasons but is also essential for reasons of stability
(Holzapfel et al. 2004a). In order to represent an
analogous assumption in the potential (4.6), it is
convenient to modify the definition (4.2) of the structure
tensor H,. It is therefore assumed that the anisotropic
part (1—3k)(@g;® ag;) contributes to H; only if the
strain in the direction of a; is positive, i.e.
C : (ag;®ay,;) > 1. For k=0 this assumption is sufficient
for convexity of the potential (4.6) (Holzapfel et al.
2004a). While a proof of convexity in the more general
case remains to be provided, a simple proof (with certain
limitations) is provided in the appendix A.

Remark 4.2. The media of the arterial wall is composed
of smooth muscle cells, elastic sheets and fibrils, and
bundles of collagenous fibrils (Rhodin 1980) forming
lamellar units (Clark & Glagov 1985). In particular, in
elastic arteries fenestrated elastic laminae, about 40-60
in large arteries (Rhodin 1980), give the media a clear
laminated structure. In the unstressed tissue the
lamellae are folded and straightened successively with
increasing stretch (Samila & Carter 1981). The
proposed modelling of the non-collagenous groundma-
trix by means of an isotropic (neo-Hookean) model
seems to be too restrictive a simplification for the
medial layer of elastic arteries. Nevertheless, in view of
its simplicity, this assumption is adopted here.

Remark 4.3. In order to show the differences between
(4.6) and the anisotropic contribution of the free-energy
function, as introduced in Holzapfel & Gasser (2001)
and Holzapfel et al. (2000), we replace E; by
kI + (1 —3k)I,;, —1. Here I,;= ay;®ay, : C is a tensor
invariant equal to the square of the stretch in the
direction of aq; Hence, (4.6) reads

v, (C,H,) =2k—]i2[exp{k2[/<71 +(1—3k) 14, —1]2} —1],

i=1,2,

which clearly shows that ¥y, depends on I, in addition
to I,;. This is the most fundamental difference between
(4.6) and the formulation introduced in Holzapfel &
Gasser (2001) and Holzapfel et al. (2000). Note that for
k=0 the potential (4.6) coincides with that in Holzapfel
& Gasser (2001) and Holzapfel et al. (2000).
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Remark 4.4. For k=1/3 (corresponding to an isotropic
distribution), the potential (4.6) becomes

W (C) = ;é{am[%(ﬂ—3f}—l} i=1,2,

which is similar to that proposed by Demiray (1972),
and applied within the context of finite elements by
Delfino et al. (1997). The only difference is that (4.6)
involves (I; —3)? instead of the term (I;—3) in
Demiray (1972).

4.3. Kirchhoff stress tensor and spatial elasticity
tensor

In order to implement the model in the multi-purpose
finite element package Feap (Taylor 2000), expressions
for the underlying Kirchhoff stress and spatial elasticity
tensor are required. These are now summarized. The
continuum mechanical framework, as introduced in §3,
and the particularized free-energy function, as pro-
posed in §4.2, form the points of departure. Due to the
incompressibility assumption of the arterial wall we
focus on the isochoric contributions 7 and €, as defined
in equations (3.8)3 and (3.11)s, respectively.

4.8.1. Kirchhoff stress tensor. As already mentioned,
the non-collagenous groundmatrix is represented by a
standard neo-Hookean model. Hence, the isochoric
Kirchhoff stress response reads 7,=P:7%,, with
Ty= cb, a well-known result from the hterature see,
for example, Miehe (1996). In order to particularize the
contribution to the Kirchhoff stress tensor associated
with the potential of the ith family of fibres, i.e. (4.6),

the scalar stress function yf, = klE'iexp(kgEzzv) is intro-
duced so that d¥;/dC =y, H, holds. Based on the
above result, equation (3.8) gives, with the help of
equations (3.3) and (3.4), the final result

Ty =P iy, Tuo= 29k, b =kb+ (1-3¢)a;®a,,

4.8
for the contribution of the ith family of fibres to( th()e
Kirchhoff stress tensor. Here, the push-forward of
the structure tensor h,= FH, F" via the unimodular
part of the deformatlon has been used. Based on this
definition, the Green-Lagrange strain-like quantity £;, as
introduced in (4.7);, can be rewritten as
Ei=(hi—H,): I=trh, 1.

4.8.2. Flasticity tensor. The contribution of the non-
collagenous groundmatrix to the isochoric elasticity
tensor is given by
2
g = gtr(f'g)ﬂ)
a well-known result for the neo-Hookean model; see, for
example, Miehe (1996).
The application of equation (3.11), for the potential

of the ith family of fibres, i.e. (4.6), gives the associated

contribution to the isochoric elasticity tensor. In order to
particularize the first part of (3.11),, i.e. P € 1 P, the
scalar elasticity function yf; = k; (1 + 2/92E )exp(kQE )is

_ 2
€ —3 (@I +187,),

J. R. Soc. Interface (2006)

Table 2. Summary of the quantities required for an efficient
finite element implementation in an Eulerian setting.

C, k17 k2

K, Qp;

material data
structure data given
deformation gradient F
deformation measures

F=J3F, J=detF, b=FF",

structure tensors

C
E

H,=«I+(1 —3K)( i ®ayg;)
h;=«b+ (1—3«)(a;®a;)
structure strain invariants
Ei =tr ’_17 - 1

stress and elasticity functions
vii=hBexp(hE?), vh=h(1+20E} )exp (kB

isochoric Kirchhoff stress tensor

2

- ~ _ 7 = _ogl L
E Ttis Tg_Cb7 Tfi_QII/fihiv
=1

~h

Ll

1
F=p:7, p=I-;IQL

isochoric spatial elasticity tensor

2 -
E=2tr(F)P—2(7QI+IQ7)+4J "33 yf(pP:h;)®

i=1

(P:h;)

introduced so that

ywh

=y H;®H,.

In order to proceed, we apply the definition C;; = 4.J —4/3
(0%W, /0 62) and particularize the Eulerian (fictitious)
elasticity tensor, i.e.

(el i = FyF jJF w F lL[Cfi]IJKLa

which leads to &;=4J 3y h;®h; Based on this
(surprisingly simple) result the first contribution of the
ith family of fibres to the isochoric elasticity tensor
becomes

P:6y:P=4]"Yl(p: h)®(P: hy). (4.9)
The contributions, (2/3)tr(7y;)P and (2/3)(I®7F;+
7;,®1I), from the second and third terms in equation
(3.11)5 can be obtained immediately by using the results
(4.8). It is worth noting that the Kirchhoff stress and the
elasticity tensors are formally similar to the correspond-
ing quantities in the fibre-reinforced model (Holzapfel
et al. 2000); see, for example, the elastic part of the
response presented by Gasser & Holzapfel (2002).

With the major and minor symmetries of the
elasticity tensor contributions accounted for, they
can be implemented efficiently in a finite element
code, as was done with Frap (Taylor 2000). For
completeness, the quantities required for the
implementation in an Fulerian setting are summar-
ized in table 2
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5. EXAMPLES
5.1. Inflation of a thin-walled tube

In this section the inflation of a thin-walled tube
characterized by the proposed anisotropic constitutive
model (4.6) is investigated. In particular, the influence
of the structure parameters ag; and « on the global
response of the tube is discussed. From previous studies
with perfectly aligned fibres (k=0) it is known that
variation of the mean orientations a; of the families of
fibres has a significant influence on the global response of
the tube (Holzapfel & Gasser 2001). As mentioned,
characterizes the dispersion of the collagen fibres of each
family, and hence it controls the degree of anisotropy of
the hyperelastic formulation, which certainly has a
significant influence on the mechanical response.

Throughout this example, a membrane approxi-
mation of an iliac adventitia is adopted, with the
geometry of the reference (and stress-free) configur-
ation described by the mean radius R=4.745 mm and
the wall thickness H=0.43 mm. The geometrical data
are taken from Schulze-Bauer et al. (2003) and a sketch
of the thin-walled tube problem is shown in figure 6.
Moreover, it is assumed that the two families of
collagen fibres are embedded symmetrically, with <y
denoting the angle between the circumference and the
mean orientation ag, of the fibre families.

With no applied axial load and for an internal
pressure p;, the associated equilibrium conditions in the
axial and circumferential directions are (Holzapfel &
Gasser 2001)

MW A (AR—(H/222,))*

“9n. 2HR n=0
o (5.1)
W (R2AR 1
", < H 2)”1 0

where A, and Ay denote the axial and circumferential
stretches, respectively. In (5.1) the energy function

A A k A A
W =5 (1 =3) + 2 {explha(edy + (1=3690, — 1] =1,
(5.2)

I =242+ (M) 2 I, =2sin’y + Acos’y,

is introduced, which is derived from (4.6) by appli-
cation of the incompressibility constraint and argu-
ments of symmetry. Equations (5.1) and (5.2) define a
system of nonlinear equations that need to be solved
numerically for a prescribed internal pressure p; (using,
for example, the Newton-Raphson method).

The investigation of the proposed constitutive model
is based on solving the underlying equilibrium
equations in MATHEMATICA (2005). Tt is assumed that
the material parameters ¢=7.64 kPa, k =996.6 kPa,
ky=524.6 and the structure parameters y=49.98°
k=0.226 describe the mechanical response of the iliac
adventitia. The parameters are based on least-squares
fitting of longitudinal and circumferential tension tests
of adventitial strips of nine iliac arteries (Holzapfel
et al. 2004b). Tt needs to be emphasized that the
structure parameters vy and k are identified from the
macroscopic mechanical response rather than from
the underlying histology of the iliac adventitia.

J. R. Soc. Interface (2006)
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Figure 6. Thin-wall approximation of the inflation of the
adventitial layer with two embedded families of fibres. The
mean orientations and the dispersion of the collagen fibres are
characterized by v and «, respectively.

The investigation of potential (4.6) with respect to
the structure parameters is carried out for k=0, 0.226,
0.333 and y=239.98° 49.98°, 59.98°, with the material
parameters c, k;, ks as given above.

The results of this study are illustrated in figure 7 in
terms of internal pressure/axial stretch (p/4,) and
internal pressure/circumferential stretch (p/A) plots.
For k=0.333 (isotropic distribution of the orientation
of the collagen fibres) the different mean orientations
(indicated by different angles ) lose their meaning and
the response of the tube is isotropic (solid curves in
figure 7).

By contrast, the response of the tube for k=0.226
and 0 varies with the mean orientation vy, as expected
from the anisotropic nature of the hyperelastic formu-
lation (in figure 7 dashed and dotted curves correspond
to k=0.226, 0, respectively). As with the findings in
Holzapfel & Gasser (2001), it can be seen clearly that
the response of the tube reinforced by perfectly aligned
fibres (k=0) depends strongly on the mean orientation
v. In particular, at an internal pressure of 13.67 kPa
and at y=39.98° the axial and circumferential stretches
are computed as 0.605 and 1.221, respectively. Chan-
ging the mean alignment by +20°, to y=>59.98°, with
the same loading gives axial and circumferential
stretches of 0.391 and 1.914, respectively.

A major effect of including dispersion of the
collagen fibres is a decrease in the dependence of
the response of the tube on the mean alignment y. In
particular, for k=0.226 an internal pressure of
13.67 kPa gives axial and circumferential stretches
of 0.861 and 1.149, respectively, for y=39.98° and
0.741 and 1.360 for y=59.98°. For the isotropic
distribution of collagen (k=0.333) the response is
independent of y. This case aside, from figure 7 it can
be seen that the pressure/circumferential stretch
response stiffens as the mean orientation approaches
the circumferential direction, and the tube also has a
tendency to stiffen with increasing «.

5.2. Simple tension of iliac adventitial strips

In this section uniaxial tensile tests performed on
adventitial strips from the circumferential and axial
directions are considered. In particular, a finite element
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Figure 7. Influence of collagen fibre mean alignment y and
dispersion k on the mechanical response of a thin-walled tube.
Solid curves: isotropic tube (k=1/3). Dashed and dotted
curves: anisotropic response corresponding to k =0.226 and 0,
respectively.

computation is used to investigate uniaxial strip tests
related to experiments performed in our laboratory.
These simple examples illustrate the consequences of
the proposed (generalized) constitutive formulation
when compared with the (original) potential introduced
in Holzapfel & Gasser (2001) and Holzapfel et al.
(2000), and, in particular, the differences in their load
carrying mechanisms.

For the experiments, circumferential and axial
specimens cut from the dissected adventitial layer, as
illustrated schematically in figure 8, were used. We
assume that the material and structural properties do
not change over the adventitial patch. In addition, we
assume that the vectors ag; and ago, which represent
the mean orientations of the families of collagen fibres,
have no radial component, i.e. they are embedded in the
(0, ) plane.

For the numerical investigation, the material par-
ameters ¢=7.64 kPa, k;=996.6 kPa, ky,=524.6 and the

J. R. Soc. Interface (2006)

adventitial patch

Figure 8. Definition of circumferential and axial specimens for
the tensile tests.

structure parameters y=49.98° k=0 and «=0.226 for
an iliac adventitia are considered. It is emphasized that
the ideally aligned collagen reinforcement (k=0) is
considered for comparative purposes only and does not
describe the mechanics of adventitial tissue. The tensile
tests are modelled by means of three-dimensional finite
element computations based on the implementation of
the dispersed fibre model using Frap (Taylor 2000).
Adventitial strips of referential length L=10.0 mm,
referential width W=3.0 mm and referential thickness
T=0.5 mm are considered throughout this study. The
mounting of the specimen in the testing machine is
modelled by constraining both ends of the strip. The
strips are loaded in the tensile direction and their end
faces are not allowed to deform. The quasi-static
solution of the resulting nonlinear problem is computed
by means of the Newton—Raphson method.

The finite element computations use 3200 hexahe-
dral elements, which are based on a three-field
Hu-Washizu variational formulation (Holzapfel 2000).
This formulation is best suited for capturing the quasi-
incompressible deformation of soft biological tissues. In
particular, the mixed finite element @Q1/P0 is applied
throughout this investigation. In order to avoid ill-
conditioning of the finite element stiffness matrix
associated with standard penalty methods that enforce
the incompressibility constraint, an augmented
Lagrangian method is applied using an Uzawa algori-
thm (Simo & Taylor 1991).

5.2.1. Results fortheideal collagen fibre alignment (k=0).
Figure 9 shows the computed Cauchy stress in the
tensile direction in the circumferential and axial speci-
mens, where the outlines of the undeformed configur-
ations, shown by solid lines, are superimposed. The
results are presented for a tensile load of 1.0 N, and
perfect alignment of the collagen fibres within each
family has been assumed (k=0).

The embedded collagen fibres need to rotate nearly
into the loading direction before they can carry load
(see the discussion in §2.3.1). This causes a large
extension in the radial direction, and hence the
thickness of the specimen increases, as can be seen
clearly in the middle of the strips. In addition, due to
the incompressibility constraint, the width of the
specimens decreases. The matrix material, character-
ized by the neo-Hookean parameter c=7.64 kPa,
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Figure 9. Finite element computation of a uniaxial tension
test on an iliac adventitial strip in the circumferential and
axial directions. The Cauchy stress in the direction of the
applied load is plotted for a 1.0 N tensile load, and no
dispersion of the collagen fibres is taken into account (k=0).

supports this deformation mechanism since it is too soft
to prevent the large rotation of the collagen fibres. At
the ends of the strip transition zones have evolved that
are very similar to those observed in woven fabrics
(Milani & Nemes 2004). Figure 10 represents the
current collagen alignment, where the scalar product
Cq= a1 ay of the current orientation vectors is plotted.
It can be seen that the alignment of the collagen fibres
in the middle of the strips is characterized by c¢,>0.9
for no dispersion of the collagen fibres (k=0). More-
over, the computation showed maximum values of
¢e=0.914 and ¢,=0.917 for the circumferential and the
axial specimens (figure 10a). These values are associ-
ated with angles between the loading direction and the
current collagen fibre orientations of 11.97 and 11.75°,
respectively.

Figure 11 illustrates the predicted tensile load/
displacement (7'/u) response, where dotted curves are
results for k=0. Here « and T denote the (prescribed)

J. R. Soc. Interface (2006)
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Figure 10. Finite element prediction of the current (mean)
collagen orientations using the parameter c,= a;- as. Results
are shown for circumferential and axial specimens at 1.0 N
tensile load: (a) no dispersion of the collagen fibres (k=0); (b)
dispersion of the collagen fibres within each family (k=0.226).

displacement at the end of the specimen and the force
acting there, respectively. Until the collagen fibres are
approximately aligned with the tensile direction the
material is relatively soft and only a small force is
needed to achieve significant extension. In particular,
for the circumferential specimen the alignment requires
large average stretches, and hence the specimen stiffens
at about ©=4 mm.
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Figure 11. Computed tensile load/displacement (7T/u)
response of the circumferential and axial specimens. Dashed
and dotted curves are with (k=0.266) and without (x=0)
dispersion of the collagen fibres.

5.2.2. Results for the dispersed collagen fibre alignment
(k=0.226). Figure 12 illustrates the computed Cauchy
stress in the tensile direction in the circumferential and
axial specimens at a tensile load of 1.0 N. The outlines of
the undeformed configurations are included, and a
dispersed alignment of the collagen fibres within each
family has been assumed (k=0.226).

As can be seen from figure 12 the thickness of the
specimens remains approximately constant during
loading, which is in contrast to the results for ideally
aligned fibres (see figure 9). The transition zones at the
ends of the strips are smaller and have different shapes
from those in figure 9.

Figure 10b represents the current alignment of the
mean orientations of the embedded families of
collagen fibres. It can be seen that in the circumfer-
ential and axial specimens the alignment of the
collagen fibres in the middle of the strips is
characterized by ¢,>0.34 and c¢,>0.42. The associ-
ated maximum values are ¢,=0.353 and c¢,=0.497,
which correspond to angles between the loading
direction and the current mean orientations of
34.66° and 30.10°, respectively. Compared with the
results of the computation for ideally aligned collagen
fibres, these values indicate much less rotation of the
(mean) collagen orientations.

The computed tensile load/displacement (T/u)
response for the dispersed collagen fibre alignment
(k=0.226) is illustrated by the dashed curves in
figure 11. As already discussed, less rotation of the
collagen fibres is required before they carry load
compared with the ideally aligned case. Hence,
similarly to the results shown in §5.1, the dispersion
of the collagen fibres leads to a stiffer response of the
specimens. In particular, the distribution parameter
k controls the location of the transition point, i.e. the
stretch at which the specimen stiffens. Hence, the
stiffening of adventitial strips in the circumferential
and axial directions can be predicted within the
experimentally observed range of stretches.

J. R. Soc. Interface (2006)

Cauchy
stress (kPa)
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circumferential specimen

Figure 12. Finite element computation of the Cauchy stress in
the direction of the applied load in an iliac adventitial strip in
the circumferential and axial directions. Results are shown for
1.0 N tensile load and dispersion of the collagen fibres is
included (k=0.226).

6. CONCLUSIONS

The development of constitutive laws for modelling the
mechanical properties of arterial tissue is central for
improving understanding of, for example, the load
carrying mechanisms of the arterial wall and the
adaptation of the wall to altered mechanical loading
from both the physiological and pathological points of
view. It is also essential for the successful application of
the theory to the solution of boundary-value problems
that are associated with mechanically dominated
clinical procedures such as percutaneous transluminal
angioplasty. Moreover, the development of structu-
rally-based models is a prerequisite for understanding
the interrelationships between function and structure
within an artery and the changes in those interrelations
under changes in the mechanical environment.

In the light of improved information on the
structural arrangement within different arterial layers
of the arterial wall, in particular the significant
dispersion of the orientations of the collagen fibres
within the intima and the adventitia, we have
developed a structural model based on the nonlinear
theory of anisotropic elasticity that is able to account
for this dispersion in a relatively simple way on the
basis of a generalized structure tensor. The model has
been particularized so that the fibre orientations within
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each family of fibres generate locally a transversely
isotropic distribution. This has the advantage that it
requires only a single scalar structure parameter to
describe the dispersion of the fibres and enables the
typical nonlinear material responses of the tissue in
each layer of the artery to be captured. The formulation
developed here is a generalization of the anisotropic
formulation introduced in Holzapfel et al. (2000) and
Holzapfel & Gasser (2001). The required expressions for
an efficient finite element representation of the pro-
posed constitutive model have been derived and
implemented in Feap (Taylor 2000).

Two representative numerical examples have been
used to illustrate the mechanical response obtained
from the proposed formulation. For this purpose we
have chosen material parameters that have been
obtained from recent experiments on the adventitia of
human iliac arteries in our laboratory. In the first
example the inflation of a thin-walled tube is modelled
with the particular objective of illustrating the influ-
ence of the two structure parameters—the mean
orientation of the families of collagen fibres, and the
dispersion of the collagen fibre orientation within the
fibre families—on its mechanical response. It was found
that each structure parameter has a significant
influence on the pressure-diameter and pressure-length
behaviour of the tube. In particular, the computations
showed that a larger dispersion increases the stiffness of
the tube but decreases the dependence of its response on
the mean orientation of the families of collagen fibres.

In the second example, a finite element simulation of
an experimental tensile test on adventitial strips was
performed to determine the influence of the dispersion
of the collagen fibre orientation on the mechanical
response. [t was found that an ideal alignment of the
collagen fibres (zero dispersion) causes large rotations
of the fibres before they carry load. This mechanism is
partly supported by a soft matrix material and leads to
deformation patterns typical of woven fabrics rather
than of soft tissues. Consequently, in order to carry
load, the collagen fibres need to be rotated closer to the
direction of the tensile load. Hence, the stiffening of
adventitial strips in the circumferential and axial
directions (within the typical range of stretches) cannot
generally be predicted with a model that uses ideally
aligned fibres (zero dispersion). On the other hand, the
computation was able to replicate the stiffening of
adventitial tissue (within the typical range of stretches)
when taking the diversity of collagen orientation into
account. Based on that capability, it seems that the
present model is able to capture the main features of the
load carrying mechanisms of adventitial tissue.

Finally, it should be noted that quantification of the
structure parameters for this investigation was based
on macroscopic mechanical tests rather than on an
alternative method, such as histological investigations
involving staining of adventitial tissue. A reliable
assessment of the applicability of the proposed model
for capturing the mechanical response of arterial layers
requires structural and mechanical data from the same
specimen, which are not yet available in the literature.

This latter point needs to be emphasized since there
is a need for more detailed microstructural information

J. R. Soc. Interface (2006)

in order to inform the further development of consti-
tutive models. In particular, more quantitative infor-
mation on the distribution of collagen fibre orientations
within the different layers, and details of how individual
collagen fibres, fibre bundles and their interactions
respond under applied loads are needed. A clearer
picture of geometrical and structural changes under
load is called for; for some recent results, see Schmid
et al. (in press). It is also particularly important to
know more about the residual stress distributions,
especially in three dimensions, that have such a crucial
influence on the response of arteries under normal and
pathological conditions.
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APPENDIX A. CONVEXITY OF (4.6)

We consider here the convexity of (4.6), with (4.7),in a
restricted sense, with the material considered as
incompressible. For this purpose we simplify the
notation by writing

W(E) = 2’“—,92 lexp(b %) —1], E =k, + (1—30)11,

where
L =23+ 2417252 I = Xcos’y + Adsin’y,

A1 and A, are the independent principal stretches and
the mean direction of the fibres is given by the unit
vector ag with components (cos v, sin v, 0) referred to
the principal axes of the right Cauchy—Green tensor C.
We are assuming here that ag lies is the (15, )
principal plane. Since k;>0 and ky>0, it follows that
V/(E)>0, ¥ (F)>0.

Let ¥(2;, A) = y(E). Then, with subscripts 1 and 2
signifying partial derivatives with respect to A; and A,
respectively, we have

“pa :lp/Eou a,ﬁe{l,Q}.

A short calculation shows that F;;>0, and hence
Y11 >0 follows. It reglains to consider the Hessian
determinant y¥q;¥99 — ¥, which can be rewritten as

‘pl‘///(EIQEZQ + E3 By, —2E EyEyy) + y”° (B Eyy — E122)

‘/;aﬁ = ‘p//EaEﬁ + ‘p/Eaﬁ

It is easy to show that Ei5>0 and Ey; Fyy — Ef > 0 and
hence

E{ Eyy + E3 By — 2B\ By Eyy > (Byy/ Eyy — By /By )* 2 0.

Thus, V¥ —@?2 >0 and ¢ is a strictly convex
function of A; and 2.
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